An Intelligent Fault Detection and Diagnosis **Monitoring System for Reactor Operational Resilience** Mario Mendoza, BS'19, MS'21, PhD'23 Dr. Pavel V. Tsvetkov

Introduction

Challenge:

Solution:

• Challenges of new deployment scenarios for advanced reactors, SMRs, and microreactors

Dynamic operational regimes

- Expose reactor unit to different transients Radically reduce operations and management costs
- Semi- or fully autonomous operations

Extended fuel cycles

• Limits inspection intervals

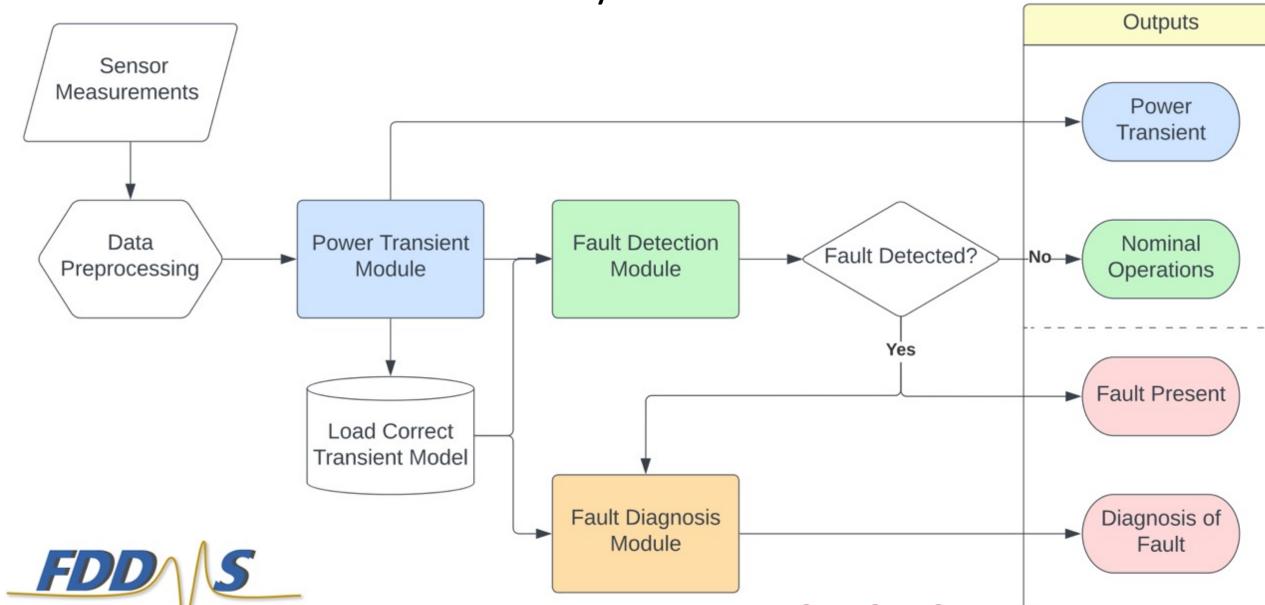
Semi- or fully autonomous operations must be facilitated while guaranteeing safety and reliability in challenging and unique operational regimes

An on-line monitoring (OLM) system is needed to detect and diagnose malfunctions and faults in real-time for the various systems and components of the nuclear plant

Data Preprocessing

- Analyze 86 plant parameters for each measurement
 - Temperatures, pressures, flow rates, positions, etc.
 - The specific number of tracked sensors is expected to be derived X_1 : from the details of the reactor plant configurations of interest.
- Sliding time-window method for generating data samples
- Allows for real-time (second by second) monitoring while still including temporal patterns in the data
- Sensor values normalized to [0,1]

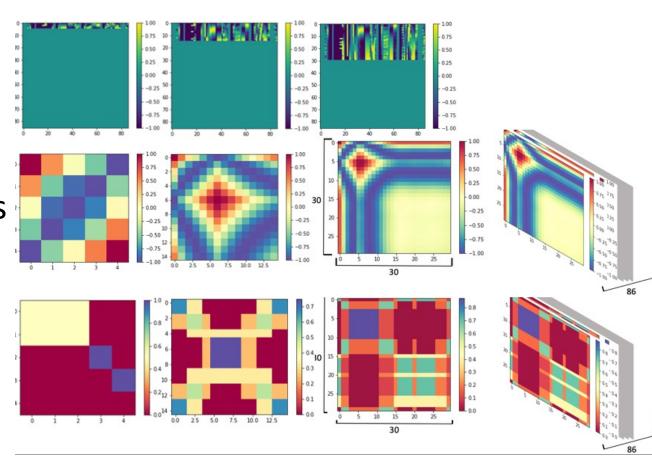
Power Transient Module


- Goal: Classifies the operational state of the reactor as:
- Steady State, Ramping Up, or Ramping Down

Integral designs

• Reduced access to critical components for inspection

Objective


- Develop an intelligent Fault Detection and Diagnosis Monitoring System (FDDMS)
 - To provide automatic and reliable power transient dependent detection and diagnosis of system and component malfunctions
 - During reactor operations by observing arrays of sensor signatures in <u>real-time</u>
 - To fit within a future semi- or fully autonomous control framework \bullet

- Output: Outputs transient state and notifies subsequent modules
 - Nominal reactor conditions vary significantly between the 3 transients
 - Different dataset loaded for each power transient in other modules
- Supervised learning classification problem \bullet
- Compared different time-window sizes
 - 5 s, 15 s, 30 s
- Compared different data transformation methods
 - Raw Data, Gramian Angular Fields, Markov Transition Fields
- Compared different data-driven methods
 - PCA+SVM, DNN, CNN

Fault Detection Module

- <u>Goal:</u> Identify each measurement as nominal or abnormal
 - Is a malfunction present in the system or not?
- <u>Output:</u> Binary nominal or abnormal. If nominal, outputs "Nominal".
- If abnormal, data passed to Diagnosis Module for classification. Sensor
- Compare unsupervised learning data-driven techniques
- Dimensionality reduction
 - PCA, DNN-based autoencoder (DNN-AE), CNN-based autoencoder (CNN-AE)
- Anomaly detection
 - One-class SVM (OC-SVM), Clustering, Reconstruction Error Thresholding
- Fit and train algorithms to only nominal data. When testing on new data, fault cases will create unexpected outputs from the models Detect any unknown fault in the system

Inverse

PCA/

Fault

Fault

Present

Decode

Reconstructed

Nomina

 $X_0: x_0 x_1 x_2 x_3 \cdots x_{t-1} x_t$

.228,

 X_n :

[0.7253,

PCA/

Encoder

Sensor

Data

Data

Latent

Space

OC-SVM/

Clustering

Model

 x_2 x_3 x_4 • • • x_t x_{t+1}

flow (kg/s)

 $x_n | x_{n+1} | x_{n+2} | x_{n+3} | \bullet \bullet \bullet x_{t+n-1} | x_{t+n}$

0.985,

Heater

 $x_n: (1 \times 86)$

 $X_0: (t \times 86)$

0.459, ...]

Steam

1 (MPa)

pressure line

Data Acquisition

- Due to lack of operational data for advanced reactors/SMRs/microreactors, data-driven FDD methods must rely on simulator data for development
- iPWR broad-scope simulator used
 - Proof of concept for the FDDMS methodology
- Built by Tecnatom (Madridbased Westinghouse subsidiary) and provided by IAEA
- Qualifies as an SMR (45 MW_e < 300 MW_e)
- Shares common features and components with other designs
 - Integral design, natural circulation, passive safety systems, etc. \bullet

As the FDDMS relies on data-driven algorithms, the methodology can be extended to any reactor plant design when given adequate data

Plant	Fault	Description	Activation	Development	Training	Validation	Testing
Subsystem	Label		Mechanism	Time	Power Level	Power Level	Power Level
-	Nominal	Reactor plant operating as expected	-	-	20% ^{N,F}	30% ^F	50% ^F
FWS	FWS 01	Loss of feed water heating	On/Off	-	40% ^{N,F}	90% ^F	70% ^F
	FWS 02	Abnormal increase in feed water flow	On/Off	-	60% ^{N,F}	50% ^N	30% ^N
	FWS 03	Loss of normal feedwater flow (pump trip)	On/Off	-	80% ^{N,F}	<u>50%</u> 70% ^ℕ	90% ^N
	FWS 04	Feed water system pipe break	50% Severity	30 s	100% ^{N,F}		
MSS	MSS 01	Steam header break	50% Severity	30 s			
	MSS 02	Tube failure in integral steam generator	50% Severity	30 s			
	MSS 04	Major steam supply system piping failure within containment	50% Severity	30 s			
RCS	RCS 02	One bank of shutdown control rods drop into the core	On/Off	-			
	RCS 03	Charging (feed) valve fails open	On/off	-			
	RCS 04	Inadvertent operation of pressurizer heaters	On/off	-			
	RCS 06	Pressure control system of the pressurizer fails	On/Off	-			
TUR	TUR 01	Turbine spurious trip	On/Off	-			
	TUR 02	Turbine spurious runback	On/Off	-		Cault I	Detection on
	TUR 03	Turbine trip with bypass valves failed closed	On/Off	-		Fault	Detection and
CBS	CBS 01	Loss of containment vacuum	50% Severity	30 s	RD -		
GEN	GEN 01	Station blackout, loss of AC power	On/Off	-			
NAVIGATION	- 4 ALARMS		CONFIG		t		

Fault Diagnosis Module

- Goal: Classify the specific malfunction type occurring in the system
- Output: The probability for a specific malfunction affecting the system
- Supervised classification problem with CNNs to predict all 17 faults Preprocessing
- Compare two diagnosis architectures
 - End-to-End: Directly classify all possible faults with 1 CNN
 - Hierarchical: Stage 1- Classify the plant subsystem in which fault occurs with 1 CNN; Stage 2- Use 1 CNN for each subsystem to classify final fault
- Leverage the hyperband intelligent hyperparameter optimization method to find optimal CNN architectures while efficiently utilizing computational resources

tion and Diagnosis Monitoring System

Ś

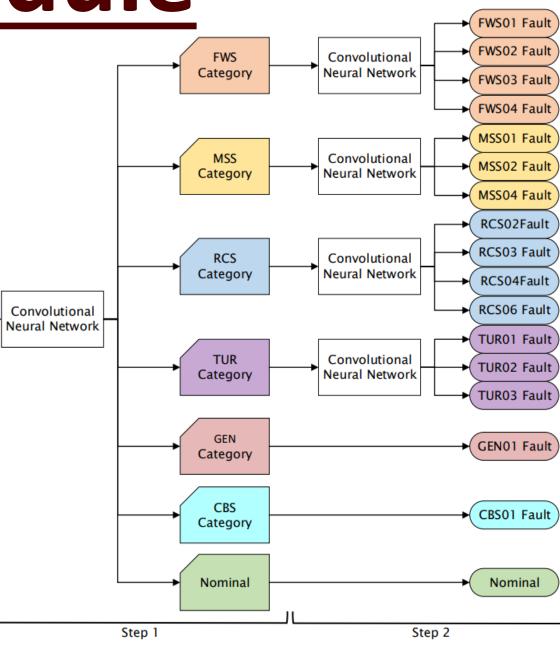
Data-driven techniques - nomina MSS

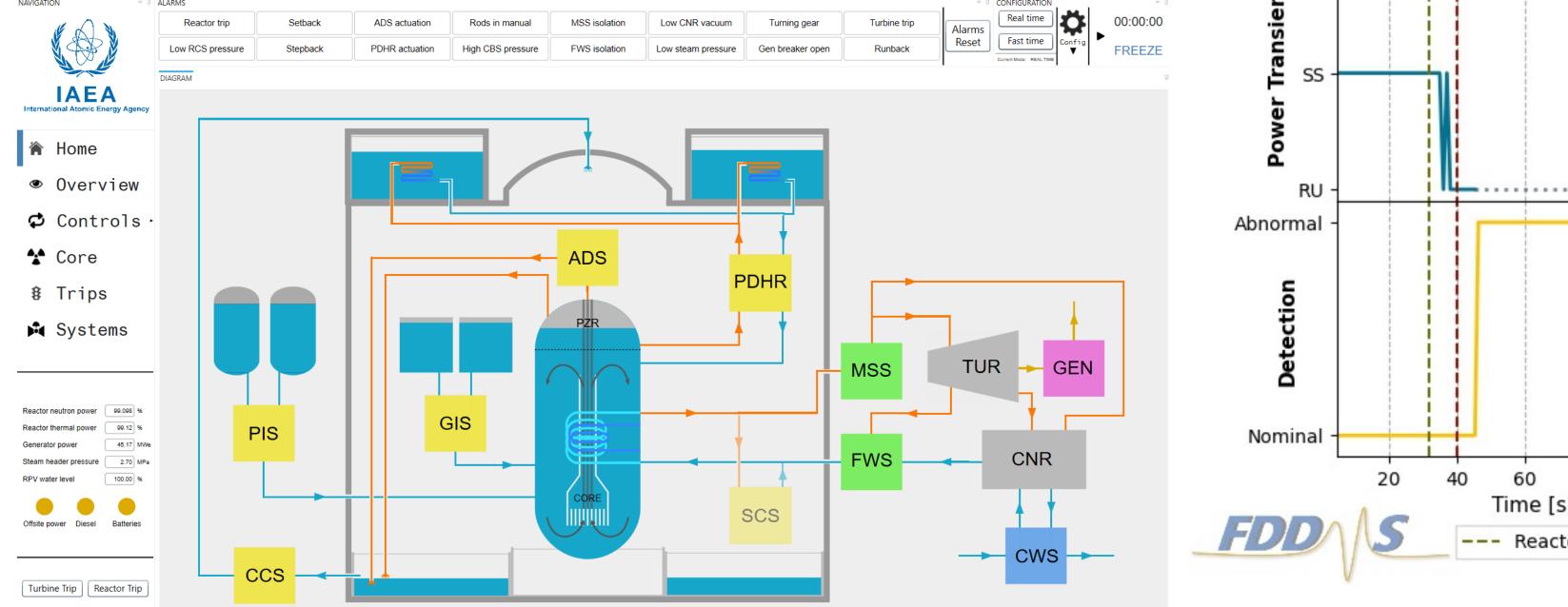
- TUR

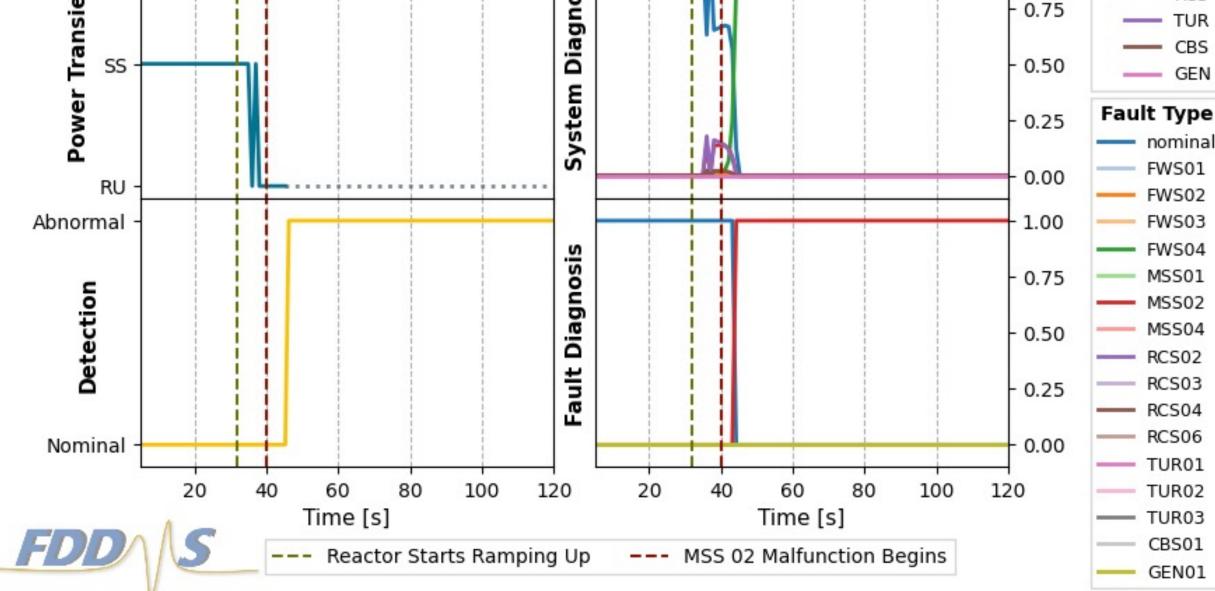
CBS

GEN

FWS01


FWS03


MSS04


FWS02

Reactor System

• Health and status of reactor system is evaluated by simply

interpreting numerous modalities of sensors collecting various process signatures.

• Can be quickly and reliably created, adapted, extended, and improved.

Power-transient Dependency

• First data-driven FDD methodology to accurately monitor the health of reactor system during various operational regimes.

• Especially applicable for load-following operations

Real-time Monitoring

• Provides evaluations on the health of the system in realtime with each measurement

• Shortest delays in detection or diagnosis compared to previous methods

