High Resolution Reactor Power Profiling with **Optical Fiber-Based Gamma Thermometers**

J. Tyler Gates MS'22 Pavel Tsvetkov

Overview

Optical Fiber Based Gamma Thermometers • (OFBGTs) were:

✓ Designed

✓ Constructed

- ✓ Tested in Texas A&M TRIGA and OSURR
 - ✓ 9 Locations Tested within TRIGA Core

Optical Fiber Based Gamma Thermometers (OFBGTs) Promise:

Improved Resolution compared to Traversing In-Core Probes (TIPs)

Conclusions and Future Work

- Several prototype sensors were constructed and tested in the Texas A&M TRIGA Reactor
- Prototype OFBGTS performed as expected
- Reliability issues are typical among prototypes and could be solved through the commercialization process
- Future Work needed in 5 Areas:
 - 1. Sensor Reliability iterative design improvements and quality control
 - 2. Vibrations Hardware and Software solutions
 - 3. High Temperature and High-Fluence Environments advanced materials

Tubing Airtight CONAX

Fitting

- ✓ Fixed in-core placement
- Simultaneous Measurement of Gamma Flux and coolant temperature

OFBGT Design and Function

- Gamma Sensitive Thermal Mass
- Temperature of Thermal Mass Measured
 - Inner Fiber measures axial $T_i(z)$
- Temperature at outside of sensor measured
 - Outer Fiber measures axial $T_o(z)$
- Response function relates q' to $\Delta T(z)$
 - $q'(z) = R(\Delta T)$

Fnd

• Heater wires for calibration

- 4. Data Reconstruction reduce dependence on models and improve resolution
- 5. System Longevity address long-term performance and maintainability

Computer Simulated Performance

MCNP-Generated Photon and Neutron Heating Rates

- 17 Sensor Locations
- Heat Generation Ranges from 3.82 W to 10.38 W
- 90% of heat generated by Photons

Leveraged Previous Thermal-Hydraulic Analysis for Similar Sensors:

Predicted straightened flow, higher flow rates, and cooler fuel temperatures

PULSE SAFETY LINEAR POWER 2 to TRIGA Pool Thermocouple

Experiment 1:

TRIGA Reactor

- Tested Sensor Insertion and Removal
- Qualification Tests for full-power operation
- Data informed iterative design improvements

Experiment 2:

- Test prototype sensors in nominal operating conditions (400-900 kW)
- Testing ended early due to sensor failures
- Data informed iterative design improvements

Experiment 3:

- Rebuilt prototypes tested in nominal operating conditions (400-900 kW)
- Testing successful in 9 sensor locations
- Data used to inform power reconstruction algorithms
- Experience used to inform high-temperature sensor design

- Heat rate consistent for individual positions
- Shape of heat rate unique to each position
- Heat rate is more accurate near center of the core, has more variability at edges
- Data agrees well with MCNP, with some differences due to vibrations and noise
- The desired data was obtained, but room remains for improvements

First Prototype Sensor Being Calibrated next

Sensor Locations Tested in Exp. 3

- **Sensor Design and Reliability**
 - Solder failure in Experiment 1
 - Solder Rings and Epoxy failure during Experiment 2

LEAD TO

Sensor Design and Reliability

Iterative Improvements

Moving Sensor Heat Rate

• Several methods of attaching Capillary Tubes to outer sheath Eventually resorted to mechanical fasteners

- Soldered rings snagged on insertion
- Capillary Tube fibers damaged as a result
- Sensor bending during experiment 3
- Thin tubing bent during insertion
- Other minor ease-of-use issues
- **Vibrations and Flow Effects**

• Sensor vibrations in core due to flow

• Building vibrations impacting optical equipment

Sensors with Damaged Capillary Tubes

- Improved construction quality control
- Improved in-core support mechanisms

• Vibrations and Flow Effects

- Made use of passive-isolation optical table for OBR
- Reduced cross flow over the core by controlling pumps.
- Increased scan rate to mitigate vibration effects

Acknowledgments

• This work was made possible in part by the U.S. Department of Energy under the Nuclear Energy University Program under Grant Number DE-NE0008810. Lead PI: Thomas Blue, The Ohio State University • This work made use of Idaho National Laboratory computing resources supported by the U.S. DOE Office of Nuclear Energy and the Nuclear Science User Facilities under Contract No. DE-AC07-05ID14517

• Special thanks go to Jere Jenkins, Viktor Vlassov and Scott Miller of the Texas A&M Nuclear Engineering and Science Center and the rest of their staff for their immense help throughout the project • Thanks go to Thomas Blue for his leadership of the project and to his students Tony Birri and Joshua Jones for contributing to the design and construction of the sensors and data processing

Repaired Sensors with Mechanical Fastener

TEXAS A&M UNIVERSITY Department of Nuclear Engineering