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Introduction:
• Correlated neutron counting is a popular family of techniques that aims to characterize fissile material

systems.
• We want:

• The two biggest challenges faced when employing these methods are the low-fidelity of the solution to
spectral and geometric effects as well as well as the long-runtimes when processing list-mode data in MCNP.

Source Adjuncton Initiate Collision 
Loop

Apply Variance 
Reduction (Russian 
Roulette, Implicit 

Capture)

Register Path Lenth 
Estimate Score 

Based on Adjoint 
Source

Store Historical 
Data End History Loop

Left: Plot of the various fictitious continuous cross-sections used to develop toy model utilizing a forward Monte Carlo simulation. Right: Monte Carlo solution obtained 
from a forward Monte Carlo simulation where the adjoint source is the capture cross section (response function). Forward neutrons around ~0.2 lethargy range 

contribute most to the response of interest.

Plot representing the adjoint flux solution w.r.t. time in unit shakes and lethargy. Adjoint solution to the Feynman-Y equation over varying gate-width time bins. This relies on the first and second adjoint statistical 
moments of multiplicity. Variations at earlier times can be attributed to problem specific parameters such unrealistic cross sections or a 

second adjoint moment that does have not a fully defined source (in progress).

Experiment using the BeRP (beryllium reflected Pu) ball reflected by polyethylene hemispherical shells. These measurements can be 
used for algorithm and code validation and can be used to validate the adjoint MC solution of Feynman-Y. [1]
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Preliminary Results & Moving Forward:
Currently, the MC code can compute the adjoint flux for the 1st and 2nd order moments of multiplicity. These 
moments are then convolved with the forward neutron source to obtain the Feynman-Y solution. The long-time 
limit of the Y solution was then used to compute α, the prompt neutron decay constant, which is then used to 
compute R1 and R2, the singles and the doubles count rates.
Issues:
• Order of magnitude between the adjoint and analog solutions of Feynman-Y are different by 7 orders of 

magnitude.
• The second moment adjoint source isn’t telling the full story and needs to consider terms that deal with the 

detector response itself.
Future Work:
• Compare the adjoint solutions of the moment distributions with the distribution computed analytically with the 

same system parameters to verify the validity of the method at the proof-of-principle stage.
• Adjust the second adjoint source to consider the detector response.
• Implement the adjoint solver with MCNP to validate the method with experimental data (see BeRP ball).

Method:
The method that is being employed is based on work from Gabrieli [2] in their extraction of statistical
moments using an adjoint formulation of the stochastic neutron transport equation developed by
Munoz-Cobo:
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